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Opportunities

* Proliferation of cell phones
— 61% of the world’s population (4.1 billion) and 89% of
U.S. (276.6 million) are mobile subscribers (jun. 09) ue
— 23% of U.S. Households are Wireless—Only (pec. 09) 31
— E-911 mandate for locating cell phones

UNIVERSITY OF
soumrowes e Proliferation of cell phone “apps”
— While data is being collected from participant via phone,
location-aware mobile apps can provide services to user
(e.g. personalized traffic reports)
* Incentive for extended survey participation
* Longer survey period s with smaller samples for study

[1] International Telecommunications Union, “Measuring the Information Society - The ICT Development Index,” International

Telecommunications Union, 2009. [PDF]. Available: http://www.itu.int/ITU-D/ict/publications/idi/2009/material/IDI2009_wS.pdf. [
[2] http://www.ctia.org/media/industry_info/index.cfm/AID/10323
©USF2010 [3] http://news.yahoo.com/s/ap/20091216/ap_on_hi_te/us_cell_phones_only
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TRAC-IT

* Mobile software for GPS-enabled
phones

— Like an iPhone App
— It’s OPT-IN

UNIVERSITY OF

SOUTH FLORIDA ° Features:
— Runs on low to high tier phones
— Records a person’s travel behavior (an electronic activity

diary)

— Collects O/D and route information via GPS for all modes
— Increases quality and quantity of collected information

— Provides “hyper-personalized” real-time travel information
services (e.g., traffic alerts)

©USF2010
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TRAC-IT

 Two modes for TRAC-IT:
— PASSIVE

* No interactions with user, runs in background
* Records GPS path, provides real-time services -
UNIVERSITY OF _ ACTIVE

SOUTH FLORIDA

* Adds questions at the RACEIT:
end of their trips: Purpose of Trip:
— Name for location Eégg‘ggpﬁated e
— Mode of Transportation (53) Piekiip
omeone
— Purpose of Trip (4) Go Home

etc. ...

— Occupancy of Vehicle

<- Back Select
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GPS Data Pre-Processing

 Battery life is key concern for mobile apps
+ If the user’s phone dies, they will not use
the app
* Problems with tracking:
— GPS consumes significant energy for each fix
— Wireless communication drains battery fast
* Solution:

— Create data pre-processing algorithms that run
on the cell phone before data is sent to server




Impact of GPS on Battery
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GPS Data Post-Processing

* Once the GPS data reaches the server, it
1s stored as records in a database

— (X, Y) coordinates
UNIVERSITY OF

SOUTH MLORTDA In order to derive information from GPS,
spatial data mining is necessary

» Automation is key for large datasets!

» Algorithms based on spatial operations
can use spatial databases (e.g., PostGIS)

1

Hierarchical Clustering can find

Points-of-Interest (POls)

‘ . Points are clustered

- L
POI | | based on proximity
5 | toform a POI

Theremaining unclustered points
naturally form discrete trips with
Points of Interests (i.e., clusters) as
starting and ending locations

POI2-® 12




BEFORE - Raw GPS data points

Generates:
—Trip start/end times & locations
—Dwell times at POIs

>
5

1544519 154451

< v

Bf 1544520

—_—




Merging User POIs

» Multiple visits to the same “location”
should be registered with same POI

e Needed to count

oot visitation frequency

SOUTH FLORIDA

 Algorithm uses POI
overlap/bounding
boxes to merge
similar POIs

» Can be per user, or
aggregate

15

Deriving Trip Characteristics
from GPS data

 Passive tracking places least burden
on participant

: » However, surveyors often need
le['\’ERi\']'EY ())F ..
SOV LoD additional data beyond GPS:

— Mode of Transportation

— Purpose
— Occupancy

e Can we automatically determine these




de Detection

orks identify MODE
hta alone?

* Two Step Process:
— Training with known
example data
— Testing with new,

unseen data Hidden

Layers

Outputs (Walk, Transit, or Car)
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Two Types of Datasets Studied

UNIVERSITY OF
SOUTH FLORIDA

All GPS Points Critical Points Only

Choosing Data Input Attributes

» User must choose data input attributes for
neural network

UNIVERSITY OF

soomronns o (Goal 1s to find attributes that will easily
identify modes of transportation

» Need to distinguish between similar modes
— Especially Car vs. Bus

11



Choosing Data Input Attributes
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Final Inputs

* Inputs chosen for A/l GPS Points
dataset:

— Avg. Speed

UNIVERSITY OF

SOUTH FLORIDA _ Max. Sp e ed
— Avg. Accuracy Uncertainty
— Percent Cell-ID Fixes

— Standard Deviation of Distance Between
Stop Locations

— Average Dwell Time

©USF2010
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Final Inputs

* Inputs chosen for Critical Points Only
dataset:

— Avg. Speed

— Max. Speed

DNvERTY OF - — 4yg. Acceleration

— Max. Acceleration

— (# of Critical Points / Total distance of the
trip)

— (# of Critical Points / Total time of the trip)

— Total Distance

— Average Distance between critical points

Patents Pending

Experiment

* 114 trips recorded in Tampa, Fl

— 38 car
— 38 bus
— 38 walk

* Devices = Motorola 1870 and 1580 phones
— Sprint-Nextel iDEN network

» Software = TRAC-IT mobile app.

— Java Micro Edition w/ JSR179 Location API
— Queries position every 4 seconds

©USF2010
Patents Pending
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Experiment

e Neural Network Software = Weka
— Used Java API for Multi-Layer Perceptron

e 10-fold cross validation used

vaversy o — Full data set randomly partitioned into 10 sets
— 9 sets used for training, 1 set for testing
— Repeated 10 times while alternating testing set

— Reported accuracy is mean value of 10 tests

©USF 2010

Patents Pending 2

Results

» Numerous neural network settings were
tested

* Best results:

UNIVERSITY OF

SOUTH FLORIDA Type ofInput Accuracy
All GPS Points 88.6%
Only Critical Points| 91.23%

-Using .1 Learning Rate and 300 training epochs

Good for mobile phone battery!

©USF 2010

Patents Pending »
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Results

* Breakdown of 91.23% accuracy for
Critical Point Only dataset

Mode of Average
Transportation | Accuracy Per
Mode
Car 92.11% } Similar
Bus 81.58% traits
Walk 100.0%

29

UNIVERSITY OF
SOUTH FLORIDA

Automated Purpose Detection

* Use GIS Land-Use and Zoning maps
to determine location type
— Single-Family Home
— Restaurant
— Ete.

* Derive purpose from location type

15



urpose Detection
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Sample DOR Codes

USE CODE PROPERTY TYPE
Residential
— 0000 Vacant Residential
- 0100 Single Family
- 0200 Mobile Homes
Commercial

- 1300 Department Stores
— 1400 Supermarkets
- 1600 Community Shopping Centers
- 1700 Office buildings, non-professional service buildings, one story
— 2000 Airports (private or commercial), bus terminals, marine, etc.
- 2100 Restaurants, cafeterias
- 2200 Drive-in Restaurants

2300 Financial institutions (banks, savings and loan companies, etc.)
— 2400 Insurance company offices

2500 Repair service shops (excluding automotive)

Institutional

7100 Churches
- 7200 Private schools and colleges
- 7300 Privately owned hospitals
— 7400 Homes for the aged
- 7500 Orphanages, other non-profit or charitable services




Automated Purpose Detection

» Possible, but many challenges:
— Multi-use areas:
USF » Baseball field at a school
UNIVERSITY OF — Alternate uses:
SOUTH FLORIDA
* Work at a restaurant
— Coding issues:
» Red Lobster designated as “Federal” instead
of restaurant

» Likely useful for prompted recall
— ~65% accurate in proof-of-concept

©USF2010
Patents Pending

Provide Value to Participant

+ “Hyper-personalized” real-time traffic alerts
S o 0 '

I SF e e = ALERT! T
: You are headed towards

UNIVERSITY OF - an accident at S. Howard

SOUTH FLORIDA > e = = . and Crosstown Expy

©USF2010
Patents Pending 34
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What is Path Prediction?

+ Real-time spatial data mining
 Predicts a user’s real-time path using:

— Real-time location

I — Historical travel behavior
» Based mainly on spatial data operations

* Once path is predicted, algorithm can find
alerts along a traveler’s predicted path
— Ex. Traffic accidents, advertising

* Reduces irrelevant alerts sent to users

©USF2010
Patents Pending

35

How It Works

* Two steps:

— Part A - Build user history over
time from traveled paths
— Part B — Predict immediate
travel behavior based on real-
time and historical travel

behavior

©USF2010
Patents Pending
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How It Works (Part A)

As user travels over time, recorded GPS

data 1s translated into paths (polygons) in
database

© O

GPS data points

37

UNIVERSITY OF
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How It Works (Part A)

As user travels over time, recorded GPS

data 1s translated into paths (polygons) in
database

Converted to polyline...

38
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How It Works (Part A)

As user travels over time, recorded GPS

data 1s translated into paths (polygons) in
database

Converted to polygon.

39
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How It Works (Part B)

In real-time, phone sends GPS fixes to
TRAC-IT server...

40
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How It Works (Part B)

...Server runs Path Prediction and checks
path history...

Prediction

41
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How It Works (Part B)

...An algorithm using a series of spatial
operations identifies the most likely
paths...

S Ty

TP

42
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How It Works (Part B)

Server checks for incidents intersecting
predicted paths from real-time data
source, and alerts phone

UNIVERSITY OF
SOUTH FLORIDA
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Current Path Prediction Work

* Integrate Bayesian predictions based on

POI visitation frequency with spatial
predictions

» System integration with real-time travel

information data sources in Florida

47
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Questions?

Research Associate
Center for Urban Transportation Research
University of South Florida

(813) 974-7208

barbeau@cutr.usf.edu

USF Location-Aware Information Systems Lab:
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